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Summary. A method for population and bonding analyses in the calculations with 
extended basis sets is proposed. The definition and evaluation method of the 
atomic orbitats in molecular environments (AOIMs) are described. It is shown that 
the AOIMs can be divided into two subsets, the strongly occupied minimal 
compact subset {AOIM}B and the very weakly occupied "Rydberg" subset 
{AOIM}R, according to the orbital population obtained from Mulliken analysis 
with AOIMs as basis sets. The viewpoint of "molecular orbitals consisting of 
minimal atomic orbital sets" can be optimally realized in terms of {AOIM}~. The 
Mulliken population based on AOIMs is reasonable and fairly stable to changes of 
basis sets. The Mayer  bond orders calculated based on {AOIM}B are quite stable 
to the changes of basis sets; therefore they can be used to measure objectively the 
contribution of individual atomic orbitals to bonding. 
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1 Introduction 

It is well known that the population and bonding analysis method proposed by 
Mulliken [1] can transform the complicated quantum chemical calculation results 
into a simplified physical picture familiar to chemists. Thus it is very popular 
among chemists. It is based on the "LCAO-MO" formulation, that is, the molecu- 
lar orbitals are expressed as the linear combination of the minimal orbital set of the 
constituent atoms. Thus Mulliken analysis method can give clear and reasonable 
pictures only under the "balanced" minimal basis sets [1]. However, in order to 
obtain accurate results extended basis sets have to be used in quantum chemical 
calculations, which results in some difficulties in the population and bonding 
analyses. Using extended basis sets the Mulliken analysis cannot give results with 
unequivocal physical meaning, because in that case a basis function does not 
correspond to an atomic orbital. Furthermore, the results are rather sensitive to 
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changes in the basis sets. It may give in some cases even unreasonable results. 
Several approaches have been proposed to remove the defects of Mulliken analysis 
method [2-9]. However, none of them have completely succeeded due to their own 
weaknesses. 

In this paper, it will be shown that in the calculations with extended basis sets, if 
the atomic orbitals in molecular environments (AOIMs) are taken as the basis sets 
of population and bonding analyses the defects of Mulliken analysis method can be 
overcome to a certain extent, while keeping the advantage of simplicity and being 
easy to use. Therefore an approach is provided to obtain a clear and simplified 
physical picture from the results calculated with extended basis sets. 

2 Method and principle 

It has been recognized for a long time that the orbitals of an atom in free states and 
in molecular environments may be different [10-14]. The changes of atomic 
orbitals in molecular environments have to be taken into account for explanation 
of many chemical phenomena [15-17]. Therefore it seems more reasonable to 
adopt the atomic orbitals in molecular environments as basis sets in the LCAO- 
MO formulation. In a free atom the electrons move in a potential field with 
spherical symmetry. In molecular environments the potential which the electrons 
experience is non-spherical. Its spherical component with respect to an atom is also 
different from the potential of that atom in free states. Both the atomic feature and 
the effect of molecular environments should be taken into account. It has been 
proposed [18] to define the atomic orbitals in molecular environments as the wave 
functions of an electron moving in an effective potential which is the spherical 
average of the molecular potential with the center at the related atomic nucleus. In 
other words, the AOIMs, {qS~(r)}, are the eigenfunctions of the following equation: 

[ - ½  v 2 + VAo(r)] = (1) 

where the effective potential VAo(r) is the spherical average of the molecular 
potential field with the center at the nucleus of atom A. When the spherical 
coordinate (r, 0, q~) with origin at nucleus A is adopted, then 

VAo(r) = (1/4rt) f V(r) sin 0 dO d~o, (2) 

where V(r) is the molecular potential field. E A is the corresponding eigenvalue. Let 

CA(r) = (1/r)pA(r) Y~m(O, q)), (3) 

where n, l, m are the principal, angular and magnetic quantum numbers. Substitu- 
ting Eq. (3) into Eq. (1), the radial Schroedinger equation for atom A can be 
obtained: 

I 162 1 E~P,t(r). (4) ---~-d~rz + I(l + 1)/2r z + vAo(F) P~(r) = A A 

Expanding Pot(r) with the basis set {zA(r)} centered on nucleus A 

P (r) = c ,z2(r) (5) 
k 
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and substituting it into Eq. (4), the matrix equation (6) can be obtained: 

FA C A = SA CAEA, (6) 

where the matrix elements of FA are 

( I  1 )  (Fg)kj = ;(A(r) --½-~r 2 + l(l + 1)/2r z + VAo(r) zA(r) (7) 

and the overlap matrix elements (SA)kj are 

(SA)kj = < z (r) I (8) 

cA is the combination coefficient matrix and E~ is the eigenvalue matrix. Solving 
Eq. (6) and substituting the obtained P~(r) into Eq. (3), the orbitals of atom A in 
the molecular environment can be obtained. 

For computational convenience, { zA(r)} can be taken as the same as the radial 
functions of the basis sets used in the related molecular calculation, though this 
is by no means necessary. Denote the basis set used in the molecular calculation 
as {7xm, X = A, B, C, ... } and the subset of the functions centered on atom A as 
{Z~,,}. Suppose that F ~  and S~,~ are the Fock and overlap matrix blocks, respec- 
tively, corresponding to the basis functions with quantum numbers 1,m and 
belonging to atom A, it is easy to prove that [18] 

Z (F{~m)/( 21 + 1) = F~,  (9) 
m 

(SA,,)/(2I + 1) = SA. (10) 
rn 

So after the molecular calculation finishes, the matrices F A and S/~ can be evaluated 
by use of Eqs. (9) and (10), and then Eq. (6) is solved to obtain CA and the AOIMs. 
When the basis set is complete for the molecular calculation and the subset is 
complete too for the atomic calculations, the obtained AOIMs will be exact and 
unique. The result of Mulliken analysis using the exact AOIMs as basis set should 
be unique, because the first-order density matrix with AOIMs as basis is uniquely 
determined. Even though {zXm(r)} is not a complete basis set, so long as it is 
a balanced one, the obtained AOIMs would be the optimal approximate solution 
for the given basis set, because they are obtained from variational calculations. 
Then the arbitrariness of the Mulliken analysis results would be decreased to 
a certain extent. It has been found [19] that the molecular calculations using the 
extended basis sets of 3~ plus polarization functions can give sufficiently accurate 
results. Therefore the approximate AOIMs should be good enough when the used 
basis sets are extended to 3~ or higher quality. 

By use of the matrix of transformation from basis functions to AOIMs, the 
overlap and density matrices can be transformed into those using the AOIMs 

X {¢,nm(r)} as basis set. Then the population and bonding analyses can be carried out 
in the ordinary way. 

3 Results and discussion 

The aforementioned method can be applied to any calculations based on orbital 
approximation, e.g. ab initio Hartree-Fock method or density functional theory 
(DFT) method. In recent years, the calculation practice has shown [20, 21] that the 
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DFT method based on Kohn-Sham equation usually gives more satisfactory 
results than the Hartree-Fock method does. In this work, a series of small 
molecules were calculated with different quality basis sets by the approximate 
density functional theory (LDA) method. The Kohn-Sham equation was solved, 
then the population and bonding analyses were carried out. The program for DFT 
calculations and that for population and bonding analyses with AOIMs as basis 
sets were developed in author's laboratory [22]. The reliability of the used DFT 
program has been confirmed by checking its outputs with those from the famous 
ADF program [23]. The minimal basis sets are numerical ones obtained by the 
approximate density functional theory calculations for free atoms. The double zeta 
basis sets were taken from Ref. [24]. The three and multiple zeta basis sets were 
taken from Ref. [25]. 

As an example, some calculation results for hydrogen fluoride are presented. 
The three ff plus polarization function basis set was used. After the convergent 
result of the molecular calculation for hydrogen fluoride was obtained, the angular 
averaged Fock matrix FP and overlap matrix SP for the subshell I of atom A were 
calculated by means of Eqs. (9) and (10). Then Eq. (6) was solved to get the 
eigenvector matrix CP of AOIMs for the subshell l of atom A. In Table la presented 
are the Fock matrix F~ and the overlap matrix S~ for the s type orbitals of fluorine 
atoms in HF molecules. The AOIM vector matrix C~ for s type orbitals of fluorine 
atoms in HF molecules is presented in Table 2a. Similarly, the matrices F f  and Sf  
as welt as C1 v for p type orbitals of fluorine atoms in HF molecules are presented in 
Tables lb and 2b, respectively. In Tables tc and 2c, the corresponding data of Fo n, 
So n and Co n for hydrogen atoms in HF molecules are presented, respectively. 
Because single ~ bases were used for the polarization functions, the corresponding 
AOIMs are just the same as the bases. Therefore the matrix of transformation from 
bases to AOIMs could be constructed, with which the molecular density matrix 
and overlap matrix were transformed into those with AOIMs as the basis set. The 
transformed matrices were used to carry out the population and bonding analyses 
based on AOIMs. The results are presented in the following sections. 

3.1. Population analysis 

According to the definition [1], the electron population in the nl subshell of atom 
A is 

all 

q.~= E Z P'jSIj , (11) 
ie(An/) j 

where Pi~ and S o are the density and overlap matrix elements, respectively. For the 
minimal basis sets the basis functions are just the approximate AOIMs. For the 
extended basis sets, the population on the basis functions cannot be correlated to 
the electronic occupancy on subshells, because there is no simple correspondence 
between the basis functions and the atomic orbitals. When the population analysis 
is based on AOIMs, the results can be identified with the electronic configurations 
of atoms in molecular environments. 

In Table 3 listed are the results of Mulliken population analysis based on 
AOIMs for some molecules calculated using different quality of basis sets. It can be 
seen from Table 3 that no matter which type of basis sets was used in the molecular 
calculations, the AOIMs can be divided into two clear-cut subsets. One subset 
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Table la. The angular-averaged Fock and overlap matrix blocks for s orbitals of F atoms in HF 
molecules 

Overlap matrix (upper triangular matrix) 

t,0000 0.9841 0.9964 0.0000 0,3357 0.1589 
-24.074 1.0000 0.9655 0.0763 0.2406 0.1053 
.- 23.692 -22,452 1.0000 -0.0352 0.3762 0.1818 
-- 23,987 --24.053 -23.668 1.0000 -0.9191 -0.9479 

0.0018 -0.0714 0.0356 -1.0434 1.0000 0.8682 

-8.0846 -8,1416 -7.9588 0.9434 -3.4278 1.0000 
-3.8257 -3,6379 --3.8687 1.0t14 -2.3175 -1.4228 

Fock matrix (lower triangular matrix) 

Table lb. The angular-averaged Fock and overlap matrix blocks for p orbitals of 
F atoms in HF molecules 

Overlap matrix (upper triangular matrix) 

1.00000 0.83734 0.96422 
-0.35592 1.00000 0.66709 
-0.23488 0.76120 1.00000 
-0,37198 -0.71016 -~14501 

Fock matrix (lower triangular matrix) 

Table le. The angular-averaged Fock and overlap matrix blocks for s orbitals of 
F atoms in HF molecules 

Overlap matrix (upper triangular matrix) 

1.00000 0.91016 0.98483 
- 0.08417 1.00000 0.96471 
- 0.15624 0.01610 1.00000 
- 0.12870 -- 0.12033 - 0.14217 

Fock matrix (lower triangular matrix) 

is s trongly occupied, denoted  as {AOIM}B. It corresponds to the sum set of the 
occupied subshells of free a toms in g round  states, in  general, being a min ima l  
compact  set. The  occupancy on  {AOIM}B describes the basic electronic configura- 
t ions of an atom. Thus  it is fundamenta l  and  indispensable  for essentially correct 
descript ion of the electron d is t r ibut ion  on  individual  a tomic orbitals. The  popula-  
t ion on the orbi tals  of the other subset is very small in general, called "Rydberg set" 
according to Ref. [7], and  denoted  by {AOIM}R. The electron popu la t ion  on 
"Rydberg"  set is unessent ia l  for describing the charge dis t r ibut ion of a molecule. It 
reflects the fact that  the L C A O - M O  formula t ion  based on min imal  basis sets 
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Table 2a. The s type AOIMs of F atoms in HF molecules 

W. Liu, L. Li 

l s  2s 3s 4s 5s 6s 

1.0027 0,3448 --22.211 45.014 --128.93 487.22 

--0.0009 -0 .1283  8.2373 --16.576 46.949 --159,70 
--0.0008 --0.0941 1,5196 4.8850 107.97 --345.55 

--0.0039 -- 1.3933 42,317 --117.05 --88.253 50.814 

- 0 , 0 0 2 4  --0.3182 29,704 --75,465 - 5 5 . 1 9 2  31,548 
- 0.0018 - 0.1136 16A77 - 51.819 - 39.824 23.002 

Table 2b. The p type AOIMs of F atoms in HF molecules 

2p 3p 4p 

1.4803 18.052 9.6451 
- 0.2183 -- 6.9496 - 2.2298 
-- 0.3096 -- 12.727 - 8.0430 

Table 2e. The s type AOIMs of H atoms in HF molecules 

ls 2s 3s 

-- 1.4777 7.5082 -- 9.0325 
- 0.7720 1.4083 -- 7.6339 

3.1920 -- 8.6572 16.177 

cannot accurately describe the charge distribution in a molecule. The fact that two 
subsets, {AOIM}B and {AOIM}k, can be clearly distinguished and the population 
on the subset {AOIM}R is very small, shows that  the L C A O - M O  picture can be 
optimally realized by taking A O I M s  as basis sets. In other words, by use of 
{AOIM}B, the charge distribution of a molecule can be described as accurately as 
possible within the limitation of minimal basis sets being used. For  obtaining the 
simplified physical pictures of the charge distribution as accurately as possible, one 
can consider the population on subset {AOIM}B only, while neglecting the subset 
{AOIM}R completely. The above consideration may be helpful to explain the fact 
that  in the DV-Xc¢-SCC method, although the molecular charge is approximately 
decomposed into the superposition of the spherical atomic charges by Mulliken 
populat ion analysis method,  which seems a very rough approximation,  the ob- 
tained results approach to those from much more accurate treatment. 

Two points should be noted. The first is that in some cases, some orbitals, e.g. 
the Li 2p orbitals in LiF and the S 3d orbitals in SF, possess significant population, 
although these orbitals are unoccupied in the related free atoms in ground states. 
These phenomena are usually ascribed to the change of atomic orbitals when the 
atoms transform to molecular environments from free states. It  is well known that  
the chemical properties of some elements, such as Li, Be, P, S, some transition 
metals, lanthanides, etc., cannot  be completely elucidated if only their occupied 
valent orbitals of free atoms in ground states are considered [15-17, 26]. This type 
of orbitals should be put in the subset {AOIM}B instead of {AOIM}R. The other 
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point is that small negative population appears on some orbitals in the subset 
{AOIM}R, which is obviously unreasonable. This is correlated with the inherent 
flaw of the Mulliken analysis method [2]. Fortunately, the drawback is not so 
serious here. First, the negative population on the orbitals in {AOIM}R is very 
small, less than 0.01 electrons as usual, thus it can be neglected for obtaining 
a simplified physical picture of the electron distribution on individual atomic 
orbitals through population analysis. Second, as has been mentioned above, the 
population on {AOIM}R represents the deviation of the LCAO-MO formulation 
based on minimal basis sets under the optimal situation, its values may be positive 
or negative. If one wants to remove this unreasonable point, there are two 
approaches. The first approach is to perform a symmetrical orthogonalization of 
AOIMs before the population analysis, which has been used in the natural 
population analysis by Reed et al. [7]. This approach has the defect that the 
population in fact is not localized on individual atoms in view of its space 
distribution. Furthermore, the orthogonalized atomic orbitals cannot be conve- 
niently used to the bonding analysis in terms of overlap charges. The other 
approach is to assign the small population on an orbital in subset {AOIM}R to the 
highest valence orbital with the same symmetry. This approach corresponds to 
construction of a valent orbital consisting of the AOIM in the highest valence shell 
and the orbitals in {AOIM}R. But it seems usually unnecessary. 

As an intermediate step of constructing the natural atomic orbitals (NAO), Reed 
et al. [7-I obtained the pre-NAO through diagonalization of one center angular 
symmetry blocks of the density matrix and indicated that the PNAOs could be 
divided into two sets on the basis of occupancy, the "minimal" set corresponding to 
all atomic subshells of non-zero occupancy in the ground state of free atoms, and 
the "Rydberg" set consisting of the remainder orbitals. For comparison, the 
Mulliken population analysis based on PNAOs for Nz molecules has been carried 
out and the result is listed in the row of N 2 in Table 3 (the data in the parentheses). 
It is obvious that, according to the orbital population, the PNAOs cannot be 
clearly divided into the two subsets, the strongly occupied minimal subset and the 
very weakly occupied "Rydberg" subset. Through the "occupancy-weighted sym- 
metric orthogonalization" procedure, Reed et al. [7] got the natural atomic 
orbitals, then reached the aim to clearly divide the basis set into two subsets. Their 
procedure not only made the calculation more complicated, but also introduced 
additional arbitrariness. Thus it is not so simple and objective as the AOIM 
method proposed in this paper. It can be seen from Table 3 that the population 
based on AOIMs is fairly stable to changes of the basis sets used in the molecular 
calculations. Of course, there must be some variation of the population, because 
when the basis sets used in the molecular calculations are not large enough, not 
only the AOIMs are approximate, but also the result of the molecular calculation is 
approximate. Maybe because both the MOs and AOIMs are obtained through the 
variational procedure, the population based on AOIMs can be comparatively 
more stable. 

3.2. B o n d i n g  p o t e n t i a l  

Wiberg defined the orbital bonding potential as [27] 

b, = 2 (PS) , ,  - (PS)~  

= 2q~ - qi 2, (12) 
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where qi is the Mulliken population on orbital i. It is obvious that when the 
electron population on orbital i is zero or two, bi = 0, which means that orbital 
i contributes nothing to bonding. This is in accordance with the general concept of 
chemists. Thus bi can be used to measure the bonding potential of orbital i. It 
should be noted that qi = (PS)u = ~,1i P~jSq, includes the overlap charges between 

• J 

orbital i and all other orbltals and correlates to Mulhken bond orders. Usually, 
when the extended basis sets are used in the calculations, a basis function cannot 
represent an atomic orbital. Furthermore, the basis functions centered at one atom 
are not necessarily orthogonalized to each other. Therefore b~ will involve the 
unphysical "bond orders" within an atom. Thus it cannot be used to measure the 
bonding potential of basis function i. When AOIMs are taken as basis sets, there is 
no such problem. The bonding potentials calculated based on AOIMs for some 
molecules under different basis sets are listed in Table 4. It can be seen from the 
data in Table 4 that in general the Wiberg orbital bonding potential calculated 
based on AOIMs is fairly stable with respect to changes of the basis sets used in the 
molecular calculations. The results are reasonable. For example, the bonding 
potential for the core orbitats and for the orbitals in Rydberg subset is very small, 
while the bonding potential of the main valence orbitals is in general large. It is 
weaker for 2s than that of2p orbitals, and so on. The Li 2p orbitals in LiF and S 3d 
orbitals in SF possess comparatively larger bonding potential, showing that they 
significantly participate in bonding, which is consistent with the experiments. 

3J. Bonding extent between atoms: the bond orders 

The Bonding extent between atoms in a molecule is a topic discussed very often 
among chemists. Mulliken proposed in 1955 [1] to measure it by the overlap 
charge, that is, the Mulliken bond order MAB: 

MAB = Z Z 2eijsq. (13) 
i ~ A j ~ B  

MuUiken bond order has been distributed widely among chemists. Its flaw is that 
the values of the bond order are considerably different from those conventional 
to the chemists. For  example, for the typical single, double and triple bonds the 
Mulliken bond order values often differ considerably from 1, 2 and 3, respectivdy. 
Furthermore, the values are not quite stable to changes of the basis sets. Wiberg 
[27] defined the bond order between atoms A and B, WArn as 

WAB = ~, ~ (Pi~) 2. (14) 
i e A j ~ B  

This definition, however, can only be adopted for orthogonalized basis sets. Mayer 
[28] extended it to non-orthogonalized basis sets and defined the bond order 
BAB as 

BAB : 2 2 2[(P~S)ii(P~S)J i + (PBS)'J (PBS)ji]' (15) 
i E A j 6 B  

where P~ and P '  are the density matrices of ~ and fl electrons, respectively. For the 
typical chemical bonds the values of Mayer bond order are very close to those 
conventional to chemists. For  example, the Mayer bond order between N - N  
atoms in Nz molecules is BAB = 3.0. Furthermore, BAB is rather insensitive to 
changes of the basis sets• 
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Table 5, The Mulliken and Mayer bond orders under different basis sets 
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Molecules Basis sets Mulliken bond orders 

AO {AOIM}B 

Mayer bond orders 

AO {AOIM}B 

H 2 MIN 0.884 0,884 1.000 1,000 
DZ 0.814 0,844 1,000 1.000 
DZP 0.832 0,888 1.000 1.000 
TZP 0.832 0.890 1.000 1,000 
SD a 0.015 0.011 0.000 0.000 

N2 MIN 1.073 1,073 3.000 3.000 
DZ 0.681 0,936 2.750 2.780 
DZP 1.237 1.216 2.896 2.820 
TZ 0.789 0,972 2,744 2,732 
TZP 1,382 1.3t6 2,934 2.816 
MZ 1.004 1.146 2.857 2.766 
SD 0.108 0~059 0.042 0.039 

CO MIN 0.888 0.888 2.411 2.411 
DZ 0.603 0.728 2,307 2.270 
TZ 0.598 0.808 2.276 2.259 
TZP 0,894 0,900 2,293 2.215 
MZ 0.370 0.656 2. t44 2.159 
MZP 0.705 0,804 2.197 2.288 
SD 0,081 0,038 0.038 0.034 

HF MIN 0,352 0,352 0,725 0,725 
DZP 0.422 0,362 0.741 0.700 
TZP 0.488 0.426 0.723 0.672 
SD 0,039 0,023 0,006 0,016 

LiF MIN 0.040 0.040 0.476 0.476 
DZ 0.029 0,038 0.342 0,345 
DZP 0,342 0.260 0.527 0.523 

(0A30) b 

TZP 0.400 0.276 0.598 0.594 
(0.455) 

MZP 0.372 0,270 0.545 0.544 
(0.418) 

SD 0.017 0.005 0.021 0.021 

SF MIN 0,574 0,574 1.t39 1.139 
DZ2P 0.431 0,608 0,946 0,970 

(0.160) b 
TZ P 0.117 0,490 1,126 1.149 

(0,186) 
TZ2P 0. t 83 0,490 1.090 1.115 

(0.181) 
MZ2P 0,520 0,454 0.937 1.026 

(0.172) 
SD 0,09t 0.029 0.044 0.035 

HzO MIN 0.509 0,509 0.798 0.798 
(O-H) DZP 0.914 0.914 1.181 1.153 

TZP 0,796 0,810 1.075 1,037 
SD 0.120 0.i21 0.114 0.105 
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Molecules Basis sets Mulliken bond orders Mayer bond orders 

AO {AOIM}~ AO {AOIM}. 

CC14 
(C-Cl) 

MIN 0.396 0.396 0.972 0.972 
DZP 0.479 0.524 0.995 0.978 
TZ 0.360 0.442 0.975 0.954 
TZP 0.560 0.526 1.030 0.99 I 
SD 0.045 0,038 0.013 0.008 

TSD ~ 0.069 0.040 0.035 0.032 

Standard deviation 
b The contribution of Li 2p or S 3d orbitals to the Mayer bond orders 
Weighted standard deviation averaged over all molecules 

In Table 5 are listed the Mulliken bond orders and Mayer bond orders, and 
those calculated based only on subset {AOIM}B. Different basis sets have been 
used and the standard deviation to the changes of the basis sets are listed. 

I t  can be seen from Table 5 that  the Mulliken bond orders calculated based on 
AOIMs  are more stable with respect to the changes of basis sets than the conven- 
tional ones. In comparison to Mulliken bond orders, the Mayer bond orders are, in 
consistency with the previous conclusion [28], more stable to the changes of basis 
sets. The Mayer  bond orders calculated based on {AOIM}B are more stable with 
respect to the changes of basis sets than the conventional ones. The Mayer  bond 
order can be decomposed into the contributions of individual subshells of atoms, 
which are also stable to the changes of basis sets. The contribution of a subshell to 
Mayer bond orders calculated based on {AOIM}B can be used to objectively 
measure their contribution to bonding. For  example, the contribution of Li 2p 
orbitals in LiF to Mayer  bond orders is over 75%, showing that they are the main 
bonding orbitals. In SF the contribution of S 3d orbitals to Mayer bond orders is 
up to 17%, thus it cannot  be neglected. 

4. Concluding remarks 

In this paper, it is proposed to perform the population and bonding analyses based 
on the A O I M s  when the extended basis sets are used. The AOIMs are defined as 
the solution of the Schroedinger equation of an electron moving in the potential 
field which is the spherical average of the molecular potential field with the center 
at one atomic nucleus. The method to construct the AOIMs from the Fock matrix 
of molecular calculations is presented. The results of the practical calculations for 
a series of molecules show that  AOIMs  can be clearly divided into two subsets. 
According to the Mulliken population on individual orbitals, the strongly occupied 
minimal compact  subset {AOIM}B and the very weakly occupied "Rydberg" 
subset {AOIM}R can be distinguished. The formulation of" the  molecular orbitals 
consisting of minimal atomic orbital sets" can be optimally realized in terms of 
{AOIM}m Through addition of very weakly occupied subset {AOIM}R to con- 
struct the extended basis sets the molecular electronic structure can be described 
accurately. In terms of A O I M s  the results of population analyses and the 
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calculated Wiberg  orbital  bond ing  potent ials  are fairly stable to the changes of 
basis sets. The  results of the bond ing  analysis based on A O I M s  are reasonable  and  
quite  stable to the changes of basis sets. Mayer  b o n d  orders are more  stable than  
Mul l iken  b o n d  orders. The Mayer  b o n d  orders based on {AOIM}B are even more  
stable. Thus  it can be used to objectively measure  the con t r ibu t ion  of individual  
atonaic orbi tals  to bonding.  
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